Not All Graphs are Pairwise Compatibility Graphs

نویسندگان

  • Muhammad Nur Yanhaona
  • Md. Shamsuzzoha
  • Md. Saidur Rahman
چکیده

Given an edge weighted tree T and two non-negative real numbers dmin and dmax, a pairwise compatibility graph of T for dmin and dmax is a graph G = (V, E), where each vertex u ∈ V corresponds to a leaf u of T and there is an edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax in T . Here, dT (u, v) denotes the distance between u and v in T , which is the sum of the weights of the edges on the path from u to v. We call T a pairwise compatibility tree of G. We call a graph G a pairwise compatibility graph (PCG) if there exists an edge weighted tree T and two non-negative real numbers dmin and dmax such that G is a pairwise compatibility graph of T for dmin and dmax. Since the introduction of PCGs it remains an open problem: whether or not all undirected graphs are PCGs; in other words, is there always a pairwise compatibility tree T for any arbitrary graph G? In this paper we give a negative answer to the open problem by showing that not all undirected graphs are PCGs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Graphs with at Most Seven Vertices are Pairwise Compatibility Graphs

A graph G is called a pairwise compatibility graph (PCG) if there exists an edge-weighted tree T and two non-negative real numbers dmin and dmax such that each leaf lu of T corresponds to a vertex u ∈ V and there is an edge (u, v) ∈ E if and only if dmin ≤ dT,w(lu, lv) ≤ dmax where dT,w(lu, lv) is the sum of the weights of the edges on the unique path from lu to lv in T . In this note, we show ...

متن کامل

Pairwise Compatibility Graphs

Let T be an edge weighted tree, let dT (u, v) be the sum of the weights of the edges on the path from u to v in T , and let dmin and dmax be two non-negative real numbers such that dmin ≤ dmax. Then a pairwise compatibility graph of T for dmin and dmax is a graph G = (V, E), where each vertex u ∈ V corresponds to a leaf u of T and there is an edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dm...

متن کامل

Discovering Pairwise Compatibility Graphs

Let T be an edge weighted tree, let dT (u, v) be the sum of the weights of the edges on the path from u to v in T , and let dmin and dmax be two nonnegative real numbers such that dmin ≤ dmax. Then a pairwise compatibility graph of T for dmin and dmax is a graph G = (V,E), where each vertex u′ ∈ V corresponds to a leaf u of T and there is an edge (u′, v′) ∈ E if and only if dmin ≤ dT (u, v) ≤ d...

متن کامل

A Necessary Condition and a Sufficient Condition for Pairwise Compatibility Graphs

In this paper we give a necessary condition and a sufficient condition for a graph to be a pairwise compatibility graph (PCG). Let G be a graph and let Gc be the complement of G. We show that if Gc has two disjoint chordless cycles then G is not a PCG. On the other hand, if Gc has no cycle then G is a PCG. Our conditions are the first necessary condition and the first sufficient condition for p...

متن کامل

On Dilworth k Graphs and Their Pairwise Compatibility

The Dilworth number of a graph is the size of the largest subset of its nodes in which the close neighborhood of no node contains the neighborhood of another one. In this paper we give a new characterization of Dilworth k graphs, for each value of k, exactly defining their structure. Moreover, we put these graphs in relation with pairwise compatibility graphs (PCGs), i.e. graphs on n nodes that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010